52 research outputs found

    An Ensemble of Knowledge Sharing Models for Dynamic Hand Gesture Recognition

    Full text link
    The focus of this paper is dynamic gesture recognition in the context of the interaction between humans and machines. We propose a model consisting of two sub-networks, a transformer and an ordered-neuron long-short-term-memory (ON-LSTM) based recurrent neural network (RNN). Each sub-network is trained to perform the task of gesture recognition using only skeleton joints. Since each sub-network extracts different types of features due to the difference in architecture, the knowledge can be shared between the sub-networks. Through knowledge distillation, the features and predictions from each sub-network are fused together into a new fusion classifier. In addition, a cyclical learning rate can be used to generate a series of models that are combined in an ensemble, in order to yield a more generalizable prediction. The proposed ensemble of knowledge-sharing models exhibits an overall accuracy of 86.11% using only skeleton information, as tested using the Dynamic Hand Gesture-14/28 datasetComment: Accepted at International Joint Conference on Neural Networ

    Multi-Metric Evaluation of Thermal-to-Visual Face Recognition

    Full text link
    In this paper, we aim to address the problem of heterogeneous or cross-spectral face recognition using machine learning to synthesize visual spectrum face from infrared images. The synthesis of visual-band face images allows for more optimal extraction of facial features to be used for face identification and/or verification. We explore the ability to use Generative Adversarial Networks (GANs) for face image synthesis, and examine the performance of these images using pre-trained Convolutional Neural Networks (CNNs). The features extracted using CNNs are applied in face identification and verification. We explore the performance in terms of acceptance rate when using various similarity measures for face verification

    Fairness on Synthetic Visual and Thermal Mask Images

    Full text link
    In this paper, we study performance and fairness on visual and thermal images and expand the assessment to masked synthetic images. Using the SpeakingFace and Thermal-Mask dataset, we propose a process to assess fairness on real images and show how the same process can be applied to synthetic images. The resulting process shows a demographic parity difference of 1.59 for random guessing and increases to 5.0 when the recognition performance increases to a precision and recall rate of 99.99\%. We indicate that inherently biased datasets can deeply impact the fairness of any biometric system. A primary cause of a biased dataset is the class imbalance due to the data collection process. To address imbalanced datasets, the classes with fewer samples can be augmented with synthetic images to generate a more balanced dataset resulting in less bias when training a machine learning system. For biometric-enabled systems, fairness is of critical importance, while the related concept of Equity, Diversity, and Inclusion (EDI) is well suited for the generalization of fairness in biometrics, in this paper, we focus on the 3 most common demographic groups age, gender, and ethnicity.Comment: 6 pages, 3 figure

    Dog Identification using Soft Biometrics and Neural Networks

    Full text link
    This paper addresses the problem of biometric identification of animals, specifically dogs. We apply advanced machine learning models such as deep neural network on the photographs of pets in order to determine the pet identity. In this paper, we explore the possibility of using different types of "soft" biometrics, such as breed, height, or gender, in fusion with "hard" biometrics such as photographs of the pet's face. We apply the principle of transfer learning on different Convolutional Neural Networks, in order to create a network designed specifically for breed classification. The proposed network is able to achieve an accuracy of 90.80% and 91.29% when differentiating between the two dog breeds, for two different datasets. Without the use of "soft" biometrics, the identification rate of dogs is 78.09% but by using a decision network to incorporate "soft" biometrics, the identification rate can achieve an accuracy of 84.94%
    • …
    corecore